Feed aggregator

Graphene gains thermal vision

Physics World - Fri, 03/28/2014 - 10:17
Room-temperature detector is first to cover infrared spectrum
Categories: Conventional Science

I learned something today...

RS2 Fora Comments - Fri, 03/28/2014 - 04:02

Hi Russell,

Thanks very much for sharing your work, i've read through it and although i'm no mathmetician I followed everything and it's a very good way to visualize space/time and some of the other RS concepts, thoroughly enjoyable.

This actually makes two things stand out for me personally, one is my love of Spirograph when I was very young and the other was when I took Salvia Divinorum as one of the effects you get with that is a very pronounced "lines going off into infinity" visualisation just like when you extend the geometric analogy between the two gravitational fields to give you the two sets of angles, rays and the resulting set of vertices which create the bi-radial matrix.

A few other things which stood out are from your Visual Gallery, images 1 and 2 are pretty much a musical waveform and some of the others are almost like a grid that's been put "over space/time".  Image 3 also reminds me of the Flammarion image and how time/space is visualised in this picture:

This is also a pretty good clue as to what you are doing when you take the "Seer's sage", peeking through to the other side of the space/time coin.

Last of all you almost get a holographic effect from image 5 in your gallery.

Overall I have found this very usual to help me see how the structure of space/time can be built up from the fundamentals and how it relates to so many other things and it will help me to understand some of the other RS papers.


Categories: RS2 Research

Rosetta sets sights on destination comet

Astronomy Magazine - Fri, 03/28/2014 - 04:00
The European Space Agency's (ESA) Rosetta spacecraft has caught its first glimpse of its destination comet after waking up from deep-space hibernation on January 20. Rosetta took the "first light" images March 20 and 21 using the Optical, Spectroscopic, and Infrared Remote Imaging System (OSIRIS). These pictures are part of six weeks of activities dedicated to preparing the spacecraft’s science instruments for close-up study of comet 67P/Churyumov-Gerasimenko. OSIRIS, developed under the l
Categories: Astronomy

NASA's Hubble Space Telescope spots Mars-bound comet sprout multiple jets

Astronomy Magazine - Fri, 03/28/2014 - 04:00
The observation of Comet Siding Spring (C/2013 A1) should allow astronomer to measure the direction of the nucleus' pole and axis of rotation.
Categories: Astronomy

The search for seeds of black holes

Astronomy Magazine - Thu, 03/27/2014 - 19:30
The discovery of dwarf galaxy black holes that are bigger than expected suggests that galaxy mergers are not necessary to create black holes.
Categories: Astronomy

Great work with this Bruce,

RS2 Fora Comments - Thu, 03/27/2014 - 14:46

Great work with this Bruce, mind blowing from the conventional standpoint but taking RS into account and working it out just makes so much sense plus you have an example from nature to help illustrate it, always the perfect confirmation if you ask me.

Going back to the Ra quotes above and just before the one you quoted:

Questioner: Would you define the word galaxy as you just used it?

Ra: I am Ra. We use that term in this sense as you would use star systems.

Questioner: I’m a little bit confused as to how many total planets the
Confederation that you are in serves?

I think you're right and the confusion Karla mentions, which is also something that stuck out for me when reading the Ra material, is because the concept is just so completely different to what we've all been brought up to believe that she struggled to understand Ra's referencing to what we term a Solar System as a Galaxy.  I wondered about that for a while so it's been very enjoyable to watch you working this out along the way and hopefully I can apply similar RS reasoning to other problems once I grasp it a bit more, i'm getting there!

I also want to mention that I was kind of put off of the Ra material since just book one is the more reliable and on learning that all channelled material can't be trusted even though it's endorsement of RS had helped lead me to learn all about it.  Now it's a case of RS validating Ra again for me after Ra had validated RS previously... a nice reciprocal relationship there! I'm tempted to read through it again to see if there may be other clues like this in what they say but I have a reading list that has spiralled out of control so it may have to wait!

So... what are you going to tackle next?!

Categories: RS2 Research

New material offers angular control over light

Physics World - Thu, 03/27/2014 - 12:00
Filter could be used in cameras and thermal solar systems
Categories: Conventional Science

Scientists solve riddle of celestial archaeology

Astronomy Magazine - Thu, 03/27/2014 - 04:00
Researchers have discovered that many white dwarfs show signs of contamination by rocky material, the leftovers from a planetary system.
Categories: Astronomy

Asteroid Chariklo found to have two rings

Astronomy Magazine - Wed, 03/26/2014 - 17:00
This is the smallest object by far found to have rings and only the fifth body in the solar system to have this feature.
Categories: Astronomy

Physicists link neutron stars to earthbound alloys

Physics World - Wed, 03/26/2014 - 09:44
Calculations suggest neutron-star crusts have rich and varied structure
Categories: Conventional Science

Major new dwarf planet discovered

Astronomy Magazine - Wed, 03/26/2014 - 04:00
Scientists report the discovery of a distant dwarf planet, called 2012 VP113, which was found in the hypothesized inner Oort Cloud.
Categories: Astronomy

Mars rover's next stop has sandstone variations

Astronomy Magazine - Tue, 03/25/2014 - 17:00
Curiosity is approaching a site called “the Kimberley,” where there are four types of terrain with different rock textures.
Categories: Astronomy

Seismic cloak could minimize earthquake damage

Physics World - Tue, 03/25/2014 - 09:05
Transformation seismology tested in France
Categories: Conventional Science

Ra: Sun is center of a galaxy

RS2 Fora Comments - Tue, 03/25/2014 - 09:05

The Ra Material 16.35:

Ra: I am Ra. I see the confusion. We have difficulty with your language.

The galaxy term must be split. We call galaxy that vibrational complex that is local. Thus, your sun is what we would call the center of a galaxy. We see you have another meaning for this term.

Perhaps Ra knows a little more than he is saying... or that Carla was able to interpret. Knowing how channeled communicaiton works, and seeing how far off the world view of the instrument this concept would be, it makes me wonder.

Categories: RS2 Research

A close look at the nearest “standard candle” supernova

Astronomy Magazine - Tue, 03/25/2014 - 04:00
The proximity of Supernova 2014J in M82 has allowed researchers to study a type Ia supernova over a wide range of wavelengths.
Categories: Astronomy

China to build a huge underground neutrino experiment

Physics World - Mon, 03/24/2014 - 09:37
JUNO will focus on neutrinos from nearby rectors
Categories: Conventional Science

Space sunflower may help snap pictures of planets

Astronomy Magazine - Mon, 03/24/2014 - 04:00
Scientists and engineers are developing a prototype deployable structure, called a starshade, that would block a parent star’s light in order to better image an exoplanet.
Categories: Astronomy

Gravitational index of refraction

RS2 Fora Comments - Sun, 03/23/2014 - 18:46

Larson refers to gravitationally-bound astronomical systems as behaving like a "viscous liquid." Nehru further commented that it may actually be more like a "hot solid." When studying Larson's Liquid State papers, I noticed that they are basically referring to the same condition, since our definition of the melting point is based on a percentage of an aggregate entering the liquid state--not based on atomic properties. In both cases, the astronomical situation within the gravitational limit is the same--that of a high-viscosity liquid (which is what a heated solid also is).

However, the situation is radically different beyond the gravitational limit, where NO dimensions are being gravitationally bound. This is analogous to a gaseous state. This got me thinking about "gravitational lensing" and more appropriately, the index of refraction when light (photons) bends crossing from a viscous liquid to a gas. I used to scuba dive and one of the first things you notice is that if you reach for something at an angle above the surface--it isn't where you grabbed. It is down lower, due to the index of refraction. The same reason why it is difficult to catch a fish with your hands, standing in the water.

This also gave me a clue as to how photons could traverse the gap between gravitational limits--circular polarization. The light we normally see is plane polarized, because it's been bouncing off stuff (very pronounced when diving). Out where there is nothing to bounce off of, light will take its "natural" state, which I believe to be circularly polarized. This comes from my use of quaternions to model birotation--by default, both aspects of birotation move in the same, scalar direction. It takes an influence from an oppositely-directed motion, like the time of the atom, to flip one aspect and create opposite rotations and linear polarization. Circularly polarized photons ARE NOT CARRIED by the progression, because they have a 1-unit inward motion, due to the rotation (aka, same reason that the rotational base does--like a ball rolling forward on a belt, rather than being carried by it). These circularly polarized photons will traverse the gap between gravitational limits, existing in a state analogous to a gas.

Photons then encounter the gravitational limit, and just like shining a flashlight on a pond, take on linear polarization and refract--distorting the original angle that they approached from. Applying this to the astronomical scale, the "stars" aren't where we see them.

The way we measure stellar distances is through triangulation, using the position of the Earth on opposite sides of the sun to make the base of the triangle:

Conventional astronomy assumes that "space" is the same, 3D gravitationally-bound system we find within our solar system, so they, like a scuba diver reaching for an object that he sees but isn't actualy there, are not accounting for the refractive index at the gravitational limit--assuming a straight line and as a result, placing the star MUCH further away than it actually is. To account for "why" they can see it, they make the star larger than it is, and the errors just compound from that point.

At this time, I have no idea as to how to calculate the gravitational "index of refraction" because I have no idea of what density matter is, out at the gravitational limit. Because it is a natural boundary, stuff may accumulate there (like the Oort cloud, which may actually be the G limit), making the density high, with a correspondingly high IOR. That means that what we see, isn't where it is, as far as we think it is, and even not as bright as we may label it.

Categories: RS2 Research

Thermal Motion

RS2 Fora Comments - Sun, 03/23/2014 - 18:10

I've been typesetting Larson's Liquid State papers, trying to come up with a computer model for thermal motion--not as easy as it sounds. The primary difference between thermal motion, a linear vibration, and the photon, also a linear vibration, is that thermal motion takes place inside the time region of an atom, and although a 1-dimensional motion, effects all three dimensions of motion (what Larson calls a distributed scalar motion).

Because the vibration is in time, rather than in space, the outward half of the cycle in time is ignored, as being coincident with the temporal aspect of the progression. Therefore, only the inward half of the vibration--in time--has any net effect. Inward in time = outward in space, so the thermal vibration acts in conjunction with the spatial aspect of the progression, increasing inter-atomic distance in those dimensions where it has an effect. When the magnitude of the thermal motion (aka, it's "frequency") becomes large enough to push that dimension past the atom's gravitational limit, there is no longer any cohesion in that dimension of motion. Hence, we get the states of matter described in the topic, which is defined by the number of dimensions that thermal motion has a magnitude that is larger than the inward, gravitational motion.

This structure makes "heat" a property of the atom, not of the aggregate. Conventional science believes heat to be a property of the aggregate, so all of our measurement techniques are based on statistical probability, not atomic structure. Based on Larson's research, a "liquid" is defined as a condition when 30% of the atoms (or molecules) in an aggregate have ONE dimension of thermal motion exceeding the gravitational motion--not all of them--70% of the atoms are still in the solid state of that "liquid." (These percentages give rise to the concept of viscosity and fluidity.)

In the molecular situation, it is a clear-cut demarcation based solely on dimensions. A molecule cannot be partly solid and partly liquid--as an aggregate can--it's either one or the other. So when working with thermal properties, the melting and critical points tend to be arbitrary, based on observation of a certain percentage of atoms in the aggregate reaching a specific state.

In Nehru's dialogues with Larson, he mentions the fact that there are 4 states of matter, not three, as described in the opening topic. Science has finally caught up with the RS, and now admits to a "supercritical fluid" that has all the properties of Nehru's "vapor" state, being a mix between the liquid and gaseous states. I consider this to be more validation of Larson's thermal concepts.

Categories: RS2 Research

nuSTAR Cassiopea A high energy X-ray

RS2 Fora Comments - Sun, 03/23/2014 - 07:30



(CNN) -- Cassiopeia A was a star more than eight times the mass of our sun before it exploded in the cataclysmic, fiery death astronomers call a supernova.

And thanks to NASA space telescopes, scientists are learning more than ever about exactly how it happened.

The NuSTAR space telescope array is the first to map the radioactive material from a supernova explosion. The results were published Wednesday in the journal Nature.

"Until we had NuSTAR, we couldn't see down to the core of the explosion," Brian Grefenstette, lead author and research scientist at the California Institute of Technology, said at a news conference Wednesday.


Categories: RS2 Research


Subscribe to The Reciprocal System of physical theory aggregator